ON FRACTIONAL VOLTERRA INTEGRODIFFERENTIAL EQUATIONS WITH FRACTIONAL INTEGRABLE IMPULSES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

متن کامل

Fractional Order Semilinear Volterra Integrodifferential Equations in Banach Spaces

In this paper, sufficient conditions are established for the existence results of fractional order semilinear Volterra integrodifferential equations in Banach spaces. The results are obtained by using the theory of fractional cosine families and fractional powers of operators.

متن کامل

Semilinear Volterra Integrodifferential Problems with Fractional Derivatives in the Nonlinearities

and Applied Analysis 3 is called the Riemann-Liouville fractional integral of h of order α > 0 when the right side exists. Here Γ is the usual Gamma function

متن کامل

Approximate Controllability of Fractional Integrodifferential Evolution Equations

This paper addresses the issue of approximate controllability for a class of control systemwhich is represented bynonlinear fractional integrodifferential equations with nonlocal conditions. By using semigroup theory, p-mean continuity and fractional calculations, a set of sufficient conditions, are formulated and proved for the nonlinear fractional control systems. More precisely, the results ...

متن کامل

Volterra Equations with Fractional Stochastic Integrals

We assume that a probability space (Ω,η,P) is given, where Ω denotes the space C(R+, Rk) equipped with the topology of uniform convergence on compact sets, η the Borel σ-field of Ω, and P a probability measure on Ω. Let {Wt(ω) = ω(t), t ≥ 0} be a Wiener process. For any t ≥ 0, we define ηt = σ{ω(s); s < t}∨Z, where Z denotes the class of the elements in ηt which have zero P-measure. Pardoux and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2019

ISSN: 1392-6292,1648-3510

DOI: 10.3846/mma.2019.028